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Nomenclature

A, B state and control penalty matrices used in index of performance

CC control cost

F, G, 11 state representation matrices for truth model

F4 taugmented state matrix involving truth model and estimator

l-P7I design closed-loop matrix for model (Fmo - GK)

PIC design closed-loop matrix for estimator (Fm - KFHm)

ie nominal estimator dynamic matrix (Fm - G,,K - KFHm)

Fm, G, H state representation matrices for reduced-order modeA

G(s) open loop transfer matrix for truth model

He(s) open-loop transfer matrix for estimator

K closed-loop feedback gain matrix

KF estimator gain matrix

Al matrix of eigenvalue sensitivities to changes in elements of Q

n dimension of reduced-order model

p dimension of input and output vectors
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Q arbitrary symmetric positive definite matrix used to find K
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vi i th left eigenvector of F,
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1 Introduction

The use of feedback controllers that satisfy the positive real property are known to

have robust stability properties and have been shown to be useful especially in regard

to the control of flexible spacecraft [1, 2, 31. In this case the positive real controls

cau prevent destabilization of the closed loop system due to control or observation

spillover, and due to erroneous modal information. In a previous paper [3] we applied

a positive real synthesis technique to the design of large space structure controls. In

this case the controller eigenstructure was determined by ad hoc manipulations of an

arbitrary symmetric positive definite matrix. To obtain controller eigenvalues with
"sufficient" damping to give a reasonable closed-loop response was difficult in some

cases when using a diagonal form for this matrix. A more general arbitrary matrix is

desired.

In this report we discuss a technique for the positive real controller design that

allows general eigenvalue placement, hence resulting in improved design flexibility.

This technique is based on recasting the eigenvalue placement problem as a con-

strained optimization problem. Two formulations for the solution of this problem are

developed, and numerical results are presented for both algorithms.

2 Positive Real Systems

A time invariant single-input single-output system is said to be positive real if the

scalar system transfer function G(s) satisfies the inequality R[G(s)] > 0 for all R(s) >

0, and the system is strictly positive real if -?[G(s)] > 0 for all R(s) > 0. For a

multivariable system, the Hermitian component of the frequency response matrix

must be positive semi-definite and positive definite, respectively. For a scalar system,

positivc realness implies the Nyquist plot lies strictly in the first and fourth quadrants.

It is known that a positive real system is "dissipative", that is (generalized) energy in

such a sy3tcm is bounded above by the initial energy plus the control energy [4]. It

is this dissipative nature of the positive real controller which makes it an attractive

choice for the control of a conservative lightly damped structure.

1 n•m u|m m m• l l ~ nHmm



The important stability theorem used to guarantee stability was first proposed by

'opov [5]. The stability results can be stated as:

Popov Stability Theorem

A tits n with forward transfer matrix (() and '., dblack matrix Il[(s) i s gu,,r-

anleed stable if one of the matrices is strictly positive real and the other is positive

real.

For a flexible structure the transfer matrix between ideal colocated actuators and

velocity sensors is known to be positive real, hence a strictly positive real feedback will

lead to a stable closed loop response. While realistic actuators and velocity sensors will

not in general have a positive real transfer function matrix, Slater et al. [6] have shown

how actuator dynamics can be viewed as a multiplicative perturbation to a baseline

positive real model. These uncertainties can then be treated using the robustness

results of Doyle et al. [7, 8, 9], to derive sufficient conditions for guaranteed closed-

loop stability. This stability will then hold even though the plant transfer function

matrix will not be posjiive real over the entire frequency spectrum.

2.1 Control Design

The design of the positive real feedback controller is described in McLaren [3] and

Slater [10]. Summarized briefly here, the controlled system is assumed to be in the

for n

= Fx + Gu (1)

y = H (2)

A positive real controller is designed using an observer model based on a reduced-

order model of the controlled system. The reduced-order system is assumed to be in

the form

i= Fir,. + Gu (3)

2



Ym = HXIM (4)

where "i, G,, and H, are the matrices of the reduced-order model, x, is the

n-dinicrsional reduced state associated with the reduced-order model, y is the p-

dimensional output vector, and u is the p-dimensional input vector. The dynamics

of the estimator are given by

= Fm + GiL + KF(Y - H~n) (5)

while the feedback control function is assumed to be of the form

u = -Ki (6)

The feedback gain matrix K can be chosen by any desired means. For our applica-

tions, K is chosen to minimize an index of performance

jo T A + UT Bu) dt (7)

where the weighting matrices A and B are selected so as to place the closed-loop

poles of the reduced model (3) and (4) at acceptable locations (i.e. to place the poles

of [F, - GmKI).

Tie observer transfer matrix relating the feedback variable u' = -u to the output

y can be found from equations (5) and (6) as

He(s) = K(sI - Ft)-'KF (8)

with

F= (F,, - GmK - KFHm) (9)

3



he' matrix KF is an (n x p) matrix of estimator gains. H(s) represents the corn-

persation transfer matrix and must be chosen to yield closed-loop stability for the

actuial system (I and (2). He(s) is guaranteed to be positive real if KF is chosen to

satisfy [1W]

PFt + FtT P= -Q (10)

AF = P-i jET (11)

with both Q and P positive definite symmetric. Equation (10) may be rewritten as

PF'1 + Ff P = -(Q - KTH, - HTK) -Q (12)

where

Fd = (Ftm - GmK) (1:3)

is now assumed to be known. Calculation of KF given K and Q follows directly from

equations (11, (12) and (1:3).

T[he well known properties of the Lyapunov equation (10) specify that with posi-

tive definite Q and P we are guaranteed that F, is a stability matrix. In our solution

technique using equations (6) and (7), the choice of feedback gain matrix K leads to

an asymptotically stable F&1 . The choice of either a positive definite Q, or a positive

(efinite Q2 does not guarantee the positive real condition. Q > 0 does not guarantee

that the solution P of the Lyapunov equation is positive definite since Q may not

be positive definite. Similarly, while Q > 0 is sufficient for P > 0, this does not

automnatically guarantee Q > 0 since the matrix ( +TI,, ± H K) will generally be

inlefinite. In a solution technique the important necessary conditions to be enforced

are Q > 0 and P > 0. For a given choice of positive definite Q then, we need to be

4



rfiIdfuil that the definiteness of Q and of P must be ascertained separately. Clearly

though, for "large" Q, the definiteness conditions on Q and P are easily met.

A choice of the matrix Q determines the estimator gain matrix KF. Most of our

previous studies have restricted this choice to a diagonal matrix, or at most one with

ad hoc variations of a few matrix elements. It is clear however that this severely limits

the eigenplacement of the controller and may lead to unsatisfactory control properties.

Figure 1 shows the locus of eigenvalues of the nominal closed-loop estimator matrix

= (F, - KIHm) for a 6th order system when Q is chosen as Q = qI, and illustrates

the restrictions on eigenvalue placement when using a diagonal Q.

A more general technique is required in order to determine a rational approach

to the determination of the Q matrix, which can lead to more general eigenvalue

placement and hence a satisfactory control design. In the present work we give de-

ta ils of a numerical procedure to determine Q on the basis of eigenvalue placement.

Prescribing a full Q matrix involves choosing the n(n + 1)/2 independent elements,

since Q is symmetric. If these values are to be chosen to fulfill an eigenvalue require-

ment, there are only n equations specifying these elements, so the problem is highly

uilder-determined.

There are no obvious correlations between the closed-loop controller eigenvalues of

E and the choice of Q. In general, the KF required to achieve a given set of desired

,igwnvalues is not unique, while the choice of Q to achieve a given KF is also not

unique. Finally, it is easy to show that many eigenvalue placements are not possible

within the positive real constraint.

3 Pole Placement for the Positive Real Estimator

'h esserice of this work is to show that the non-linear pole placement problem for

the positive real estimator (10), (11) can be converted to an equivalent optimization

problem for which there are a variety of numerical algorithms. Two algorithms are

presented which differ in their choice of performance index and in the method of

handling constraints.

5



3.1 Eigenvalue Sensitivity Method

Consider the case where a nominal choice of Q in (12) results in a given set of

cigenvalues for F., which are written in vector form as . These differ fornm the

lesir(d cigenvalues A by an amount

S=,A- A (14)

where dim(A) = n. Let the independent elements of Q be written in vector form as

[T
q [ ql q1 2 q13 "' ] (15)

where dim(q) = n(n + 1)/2.

Small changes in q will cause changes in A. To achieve the desired eigenvalue

placement we need to find the solution 6A = f(q), which may be an underdetermined

set of non-linear equations. If we assume the changes in A and q are small, then we

can use linear thwory and write

6A MSq (16)

whcre .11 is a matrix of partial derivatives. M is of dimension (n x n(n + 1)/2),

hence there are a multiplicity of solutions for 6q. To stay within the linear regime,

one approach is to find the "smallest" bq to minimize the changes in Q. i.e. the least

sqlares solution

Sq = MtSA (17)

where

',t t = MjT(1j 'j T) - 1  ( S

6



If the original 6A is large then the 6q given by (17) is large and the linear theory

is no lolg(r vahd . H",Cik:C we must break the actual 6A into a number of smaller steps

for which the linear theory is applicable, and proceed sequentially to the desired set

of eigenvalues. Two, problern. must be solved to apply this technique. The first

is to compute Al, the matrix of partials, and the second is to impose the positive

(h'finitefless constraints on P and Q to ensure positive realness of the resulting transfer

11nat, rix.

3.1.1 Eigenvalue Sensitivities

The AI matrix is determined by evaluating the sensitivities of the estimator eigen-

values to parameter changes. These sensitivities are found from the properties of the

eigenvalues and eigenvectors of F,. Let Ai be the ith eigenvalue of F,. Then the right

eigenvector ui and the left eigenvector vi satisfy the relations

Feui = Aiui (19)

v*F, = Aiv (20)

where (o)* indicates conjugate transpose, and ui and vi are chosen to satisfy the

orthogonality condition

v*ui = b0 (21)

Differentiating (19) with respect to the jkth element of Fe, premultiplying by v*,

arld using (20) and the orthogonality condition (21), we can obtain the sensitivity

relationship

= v " th pi (22)

Irsitig the property that

7



( OF, = j ,,, (23)

we fiild that,

v_ Ui (21)
OFejk

where v,, and Uik are the jtL element of vi and the k"h element of u, respectively.

Using these results we can proceed to find the relationship of the eigenvalue A, to a

change in the jkth element of Q through a succession of chain rule operations involving

K [equation (11)], P [equation (12)], and finally Q. Performing these manipulations

wc have tinally

qi OAj = -* 0P (5

k P ,- FHmUi (25)
Obqjk ' 'qjk

where Sk is the partial derivative of Ai with respect to a change in the jkth element

of Q, and

O)P

Oabqj k

is a matrix obtained by differentiating equation (12). This gives the Lyapunov equa-

tion

OP F±T 09 aQ
Oqjk F F O+qP_ - O-Q=- (26)O~qabOqj k abq k

where because of the required symmetry of Q

(O-Q) =( 6, sk) + (6,63j) (27)

8



'I'he matrix M in (16) is formed by the appropriate combination of the sensitivity

elements S~k. Evaluation of tile elements of M as above requires tile solution of the

r(i. + I)/2 Lyapiinov equations contained in (26) to obtain the sensitivities

Op

O6 qjk

Each equation is related however since they differ only on the right hand side. Since

most techniques for the solution of low order Lyapunov equations require an LU

decomposition, the entire set of matrix sensitivity solutions reduce to one LU decom-

position and n(n + 1)/2 elimination solutions to a set of linear equations. thereby

making the numerical problem quite tractable.

Generally the systems we deal with will have complex eigenvalues, hence the Al

defined here is complex. To remain in the real domain for ease of computation, it

is convenient to redefine M and 6A by partitioning (16) into real and imaginary

components

A[ Al ' 6A= (28)

where the subscripts r and i here indicate the real and imaginary parts of the respec-

tive quantities. For complex conjugate pairs of poles only one root is used, thus not

changing the overall order of the problem, and ensuring that M is not rank deficient.

Also, if it is not necessary to place all n eigenvalues of a problem, then only those

Cigenvalues which are explicitly required to be placed need be involved in the analysis.

Similarly, if the imaginary part of the estimator eigenvalues are not required to be

placed, then one can simply delete the half of (28) that deals with the imaginary part

and then solve the problem as before.

Finally, in the numerical implementation of this solution, care must be taken to

ensure that the change vector 65A requested is "small", so that one remains within

the linear region (where changes in Q cause a change in A that is close to the change

9



predicted by the linear analysis). Hence, in the examples shown here we solve the

linear problem repeatedly for a nunibcr of step., uf ie form abA, where the a is

chosen to make the ctA small.

3.1.2 The Positivity Constraints

If, d(urilng the eigenvalue placement as already outlined, the Q matrix crosses a positive

d(efiiiito' boundary and becomes and remains indefinite, the final H(s) will violate the

Popov Stability Theorem as stated earlier for a positive real plant G(s) (even though

the matrix P may indeed still be positive definite!). Therefore, at a positive definite

boundary of Q, we must alter the change vector Sq in such a way that the new Q will

not be indefinite, yet still move the estimator eigenvalues in the desired direction.

The constraints on the Q matrix being positive definite correspond to constraints

on the principal minor determinants of Q,

A, > 0 for i = 1,2,...,n (29)

where A, is the jth principal minor determinant of Q. The positive definite boundaries

are the surfaces A, = 0, which are non-linear constraint surfaces in the R n(n+l)/2 space.

Consider a change vector Sq that causes Q to cross a positive definite boundarv,

and let the firt constraint that is violated be constraint k, i.e. Ak = 0 at this point.

1he normal to the tangent plane of the constraint surface at the point of crossing is

found, as V(Ak). 'I his gradient vector is always in a direction of increasing Ak. that

is, Ibck into the positive definite region of space. The elements of the gradient vector

are the matrix minors of Q for the appropriate element, and can be easily evaluated

numetrically at the point of interest by successive determinant evaluations, or for low

order problems by analytical expressions.

('osider that we are already at a positive definite boundary Ak = 0. any further

riuoVes to accomrIplish eigeuplacement should be clone along this boundary. As a linear

approximnation to the boundary we move in the tangent plane, which is completely

10



determined by the gradient vector at the point of contact with the surface. To remain

within our minimum norm approach, we simply append another constraint to our

constraint equations (16), which then become

M, q = [ V(A)T 6q, [ = bA' (30)

and the solution will be

=q- MtbX' (31)

The new position may still not be in the positive definite region due to the con-

vexity of the constraint surface at the point of contact, so one last move must be

made back into the positive definite region. The most direct method would be to

simply move in the direction of the gradient vector at our new point until we cross

the constraint surface. However, this can lead to problems if this move is done with-

out reference to any eigenplacement or minimum norm requirements. In practice we

find that in some regions the constraint gradient is very nearly aligned with the direc-

tion of greatest change of . Thus even small changes back to the constraint surface

sometimes produce objectionable changes in system eigenvalues.

In parallel with our algorithm so far therefore, we simply append a constraint

to (16) as before, but now we wish no movement in the eigenvalues while increasing

thc principal minor in question. Suppose the principal minor determinant at our new

point is still some negative quantity -,2. Then the problem becomes

ll*q2 = [/32] (32)

which can be solved for the second vector bq 2. Finally then, the new change vector

becomes

bq = 6q, + 6q 2  (33)

11



A two-dimensional representation of what is occurring at a constraint boundary is

given in Figure 2.

Although it is necessary and sufficient that both Q and P be positive definite for

ll,(s) to be strictly positive real, in practice one need only consider the constraint on

Q because of the way the filter matrix KF is evaluated. The initial Q is chosen such

that P > 0. If P is to become indefinite, then some small step must cause P to go

through the singular point det(P) = 0. However, as P comes closer to the singular

point, P- 1 will become very large, hence KF will become very large due to (11). This

will tend to significantly change the eigenvalues of F,, and the constraint that the

eigenvalue placement be satisfied for that particular iteration tends to alter Q such

that P decreases, thus moving P further from being singular.

3.1.3 Example 1

We illustrate the procedure outlined above with a simple second order example. Con-

sider the system whose reduced-order model has been chosen as

F,=[ 0 G_=1 Hm= 0 1

A feedback matrix has been chosen as K = [ 0 2 ], which gives the eigenvalues of

(Fmo - GmK) as -1.0 ± jl.0.

The estimator gain matrix was chosen initially to fulfill the strict positive real

requirements of the theory from a nominal choice of a symmetric Q as

Q = [ 73 ]

where only the upper triangular part of the symmetric Q is shown. This Q places the

eigenvalues of F, = (Fm - KFfIm) at -0.7628 + j1.4021. From here, the eigenvalue

placement algorithm was applied to move the eigenvalues of F, to -2.4 ±j2.1, (at this

stage an arbitrary eigenplacement). The total 6A desired is then 1.6372 ± j0.6979,

which, it is easily checked, is well outside the range where the linear analysis used is

12



applicable. The step size is an upper bound to the allowable desired change vector

65A at any step, and was set to 0.002 for this case. This step size is small enough to

ensure that we are within the linear region of our algorithm, and can be estimated

by comparing the desired and actual changes for one step.

After a number of small steps, the desired poles are reached, at which point

Q=[6.80955.1317

During the steps to this set of eigenvalues, no positive definite constraint boundary

was encountered. From this position, a new set of desired poles was specified as

-2.75 ± j2.3, and the eigenvalue placement algorithm applied again. Figure 3 shows

the resulting movement of the eigenvalues. A positivity boundary is met during the

placement, but the algorithm compensates by appending the extra constraints to the

sensitivity matrix, as in (30) and (32).

At the desired eigenvalues, the final Q was

4.1335 3.7837]

1 ~7.4637]j

Note that for this second order problem, once the extra constraint is added, the

modified M becomes square, and at each step the change vectors 6A1 and bA2 become

uniquely determined.

3.1.4 Example 2

The second example presented here is for control of the DRAPER I tetrahedral truss

structure [11], shown in Figure 4, which has been used by various authors as a generic

spacecraft model. The performance is measured as the ability to control the x and

y positions (line-of-sight error) of the top vertex to zero. The right-angled bipods

that connect the truss to the ground take on the dual purposes of force actuators and

velocity sensors, hence the collocation property is satisfied and the model transfer

function will be positive real.

13



A fourth order model of the structure is formed using the two modes of lowest

frequency, which have frequencies w, = 1.342 rad/s and W2 = 1.665 rad/s respectively.

Our system matrices therefore become, in modal form

Fr [0] ['11
Fm=[0 [0]

where

[L,2=~ 0]

There are six actuator/sensor pairs, with G, = HZ. The G, matrix is evaluated from

the known modal matrix and structure geometry (see, for example, reference [5]).

The feedback gain matrix K was chosen to minimize the index of performance

given in (7) with A = diag {I10} and B = I. The resulting poles of fe = (Fm, - G,,,K)

are at -1.3177, -1.4931, -2.7169 and -4,5072. For the estimator, a set of desired

closed-loop pole locations was specified as -4.0 ± j2.5 and -4.5 ± j3.0. The estima-

tor gain matrix is chosen initially using the positive real equations from a nominal

diagonal Q = diag {30.0}, which places the eigenvalues of F, at -0.6555 ± jl.2321

and -1.5480 ±j0.8986. The eigenvalue placement algorithm was applied using a step

size of 0.001. The eigenvalue paths are shown in Figure 5, and again we see that we

meet a positive definite constraint during the placement.

At the desired eigenvalue locations, the Q matrix is

[23.929 6.1181 29.916 6.3219

Q 24.373 3.7502 31.057

= 38.780 4.0889
41.758

It is important to note that this is not a unique Q to achieve the desired eigenplace-

merit. Starting from a different location in the complex s-plane, or even using a

dilfcrent step size, may give a very different final Q.
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3.2 General Non-Linear Optimization Method

For some problems, the Eigenvalue Sensitivity Method just described was found to

exhibit several drawbacks. First, in some cases the steps suggested to choose bq

will not. work. 'This call occur t'r exam[ple, when the desired cigenvalti, locations

lie outside the region where positive real control is possible. Second. in some cases

investigated, the surfaces of constant eigenvalue and surfaces of constant principal

minor determinant are almost parallel at some points in the iteration. In this case,

6A must be chosen very small or else the bq calculated may be very large. This

problem may sometimes be circumvented by starting from a different location in the

s-plane, but there is no general theory available to choose alternate starting points.

Third, the linear solution may also exhibit very slow convergence in regions where the

constraint surface has high curvature. These regions are not known a priori because

of the high dimensionality and complexity of the constraint surfaces. In such a case,

step sizes may need to be very small in order that the linear approximation be valid.

For larger step sizes, the non-linear terms in the expansion for the constraints become

significant.

To resolve some of these difficulties, an alternate form of the pole placement

optimization algorithm is proposed. Rather than seek a minimum norm on "6q" for

a specified eigenvalue change, we now seek only to minimize the norm of the error in

eigenvalue placement, i.e.

Qi - Ai - i t2 (34)

i=1I

For most problems this minimum is zero, and may be achieved for a wide range of

possible Q matrices. To further simplify our search for a positive definite symmetric

Q, we search rather for a factored (n x n) matrix S, where

Q = STS (35)

If desired, a special form of S (e.g. a triangular S) instead of a full S may be used

to reduce the number of variables. The definiteness constraints are eliminated and

15



r(.placed by the sole constraint

,lt (,) / 0 (36)

which in fact will usually be a non-active constraint. It will only become active during

the solution proceedure if the set of desired poles lies outside the positive real region.

or if a traverse across the positive real boundary is requested.

As in the previous method, only those eigenvalues required to be placed need be

included in the sum in (34), and if the imaginary parts of the eigenvalues are free,

then these components can be deleted from the objective. This objective has the

advantage over that used previously in that if the set of desired eigenvalues is not

a subset of the achievable set, then the minimization remains well posed and will

converge to a set of poles as close as possible to the desired set. In principle, this

technique could be used to numerically evaluate the positive real region for particular

pole groupings.

Derivatives of the performance index (34) are no more difficult to evaluate than

the eigenvalue sensitivities evaluated previously. Using the same methodology, the

first derivative of the objective function (34) with respect to the elements of S is

= 2_. A ,- A, 1 O-f j (3-7)

0 Sik (aSik)(7

where, in parallel with the first algorithm,

OA i _v) (P)

aSjk = KFHum (38)

P is the positive definite solution to

PF,1 + 1,1P = - [SH - m - H I ] (39)

arid
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(OP '

is a matrix obtained by differentiating equation (39), which gives the Lyapunov equa-

tion

F + F! (a s S _ S T  S) (40)

The solution to the above constrained optimization problem was found using the

subroutine package GRG2 (Generalized Reduced Gradient) developed by Lasdon and

Waren [t2] in 1982.

3.2.1 Examples 1 and 2 Revisited

When examples 1 and 2 are solved again using this second formulation, the poles are

again placed as desired, and the final Q matrices obtained are as follows.

Q 5.5826 4.8579 ]
8.1710j

24.131 -3.9992 31.307 -0.7582

83.110 -8.7024 90.621
41.045 -5.1034

100.69

Note that these Q matrices are very different from those evaluated using the

first algorithm, yet accomplish the same pole placement. This underscores the non-

uniqueness of the solution matrix Q, as well as the non-uniqueness of KF (in general).

Since for this case we used the GRG2 code, no external search path, such as that in

Figures 4 and 5, was found.

For the two methods presented, neither appears to produce a consistent control

system performance superiority, although numerically the latter approach is clearly

more efficient and robust.

17



3.2.2 Example 3

The last, example is a sixth order model of the DRAPIAIP I I truss structure. This

example was used to generate the eigenvalue locus given in Figure 1 which illustrates

the estimator eigenvalue placement when using a diagonal Q = qi. In this example

we illustrate the aditional flexibility in eigenvalue placement afforded by allowing an

arbitrary (non-diagonal) Q S"S. The modes kept in ohe model were modes 1,

2 and 5 (in [3] these modes were determined as "most" important). Mode 5 has

frequency ,-s = 3.398 rad/s. The feedback gain matrix K is chosen to minimize

(7) with A = diag {10'} and B I. The resulting poles of Fcl are at -1.2754,

-1.4931, -2.7169, -5.S560, and -0.6509 ± j3.0028. The estimator gain matrix is

chosem from an initial choice of S = So = diag{ V/5-}, which places the eigenvalues of

1K. at -0.3.17 ±Ji.322, -0.296 ±jl.781, and -1.289 ±j3.396.

A set of desired pole locations is specified as -1.70 ±jl.70, -1.80 ±jl.S0. and

-3.00 ± j3.50. This set of desired poles is chosen rather arbitrarily, the point of

the exercise being to show the efficiency of the eigenvalue placement algorithm. In

previous work [3]. we had found that the inability to do this with a diagonal Q (as

shown in Figure 1) led to poor controller performance.

1'sing the second formulation. this problem was solved using the optimization

package GRG2, and at the desired eigenvalue locations, the Q matrix is

64.76 -15.00 -19.90 -4.272 29.70 -21,36
74.06 - 11.86 27.70 33.8- -0.95:3

109.3 3.445 -66.26 52.38

22.57 9.321 -2.100
60.10 -35.29

30.38

Figure 6 shows the eigenplacement with respect to the initia! eigenvalues of the estima-

tor. It is obvious that a significant increase in the damping ratios for the eigenvalues

of [ has been achieved while leaving the damped frequencies almost constant. This

solution required approximately 60 CPU seconds on an Amdahl 470 computer.

18



Tlihe question remains whether or not this eigenvalie placement results in improved

systeim performance over a diagonal Q. To address this question, we form a positiv

real controller for this system, using a diagonal Q of the form Q = qI, which has

the same "control cost" as the controller using the general pole placement presented

here. The control cost here is defined as

CC = 0(uBu) dt = x z Z 0 (41)

where x= { X -T }Z satisfies

ZF + FTZ = -K (42)

and

Fa F -GK] (43)

0 K T RK (44)

The cost is evaluated for a particular set of initial conditions Xao . In this case. xzo

was chosen as a unit displacement in the x-y plane of the top vertex of the truss,

equally shared in the x and y directions.

If there is no model error, i.e. if F, G and H are Fmo, Gm and Hm respectively,

then the predicted eigenvalues of F, and F, are indeed the true system closed-loop

Cigenvalues. For this case, shown in Figure 7, the system whose poles have been

placed to improve their damping exhibits much better error response that the system

whose poles were chosen on the basis of a diagonal Q, even though the same control

energy is used.

If, however, we use the full system matrices for F, G and H, we introduce ad-

ditional unmodeled modes, as well as control and observation spillover. For this
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Cl.as, We observe the time response as shown in Figure 8. The significant increase

in lie dailping ratios of the estimator eigenvalues does not translate, in this case

;it least, to it significant improvement in the LOS error response. For this problem,

the resid ual modes in the syst em (those modes not in the controller) are excited by

this disturbance. and the improved damping in the estimator modes does not affect

them. This is a manifestation of the general problem of modal approximation and

mo, ,l order reduction. When estimator feedback is used as the basis for controller

design, the predicted closed-loop poles are simply the poles of Fj and F,. In practiC,

when a reduced-order model is used to design the estimator as in our examples, the

actuiial closed-loop poles may be quite unpredictable, depending on the fidelity of the

approximate model.

4 Conclusions

new technique has been presented for the determination of positive real transfer

matrices with desired eigenvalues. The technique casts the problem as a constrained

optimization problem which is solved iteratively using gradient methods. Two solu-

tion algorithms have been presented which differ in the optimization problem formu-

lation. The second algorithm, which is based on nonlinear optimization, was found to

be superior for the examples used in terms of computer time, overall convergence char-

acteristics and robustness. The new algorithms were successfully applied to a simple

seconid order problem, and to fourth and sixth order models of the DRAPER I struc-

ture. Significant changes in the estimator eigenvalue positions have been achieved

wlile retaining the positive realness of the transfer matrix. This technique promises

to give greater flexibilty ii. -czign when using positive real control.
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